March 2009

Monthly Archive

More Redoubt

Posted by on 28 Mar 2009 | Tagged as: events, home, timelapse, video

Redoubt Eruption March 27 2009 from Bretwood Higman on Vimeo. The photos for this timelapse are 15 seconds apart. The large eruption in the middle of the timelapse happened at about 7:25.

This afternoon it our view toward Redoubt cleared. We still couldn’t see the mountain, but we could see the sky just above it, where a small plume was clearly visible. So I set up the camera under the yurt, and aimed it at the volcano. Since then there have been a number of small explosions, one in the light just before sunset, and several in the dark. Some of the night eruptions were girdled in lightning, making them visible to the camera.

The volcano is providing a great photo op, but will probably interfere with travel… including Erin’s dad, stepmom, and brother who are hoping to fly into Anchorage today. Not looking so good for that.

All the following photos are cropped the same, and are 30 second exposures. They show two explosions, one that happened at 11:20 pm, another at 1:20 am. The explosions that followed the 1:20 eruption haven’t been visible… maybe there’s ash between us and the volcano now?

I might have some more interesting things to say after I’ve slept… 4:00 am is past even my bedtime!

Lightning in the ash cloud from the 11:20 pm March 27 eruption at 11:26 pm (photo 396 on the timeline figure at the bottom of this post)

Lightning in the ash cloud from the 11:20 pm March 27 eruption at 11:28 pm (photo 397)

Lightning in the ash cloud from the 11:20 pm March 27 eruption at 11:32 pm (photo 399)

Lightning in the ash cloud from the 11:20 pm March 27 eruption at 12:18 am (photo 407)

Lightning in the ash cloud from the 1:20 am March 28 eruption at 1:24 am (photo 455)

Lightning in the ash cloud from the 1:20 am March 28 eruption at 1:26 am (photo 456)

Lightning in the ash cloud from the 1:20 am March 28 eruption at 1:28 am (photo 457)

Lightning in the ash cloud from the 1:20 am March 28 eruption at 1:30 am (photo 458)

Timing of the eruptions relative to these photos (USGS seismogram)

Redoubt Volcano Ashfall

Posted by on 27 Mar 2009 | Tagged as: events, home, southwest alaska, video

Ash layer on the snow

The plume of the eruption vanished behind the clouds. We ran inside to check the Alaska Volcano Observatory page to find that the ash cloud was heading our way… Not only did we get to see it blow, it looked like we might see the ashfall too! Hig immediately went to work convincing me that we could safely set up our camera to capture the ashfall on time lapse. Glad he did, because the video is pretty cool.

Time lapse of Redoubt Volcano ash from Bretwood Higman on Vimeo.

Ash on our skylight

Snowshoeing to check out the ashfall

Snowshoeing to check out the ashfall

Tracks in ashy snow

Tracks in ashy snow

Bright line of tracks in an ashscape

I was far too distracted by the volcano and the prospect of an ashfall to do any real work, so I stood at the sink doing dishes, staring out our plastic window in the direction of Redoubt. The mountain was invisible behind a strange dark blue-grey cloud. As the cloud approached, I watched the sky get darker, and darker. All the mountains across the Inlet disappeared. I could see streaks of ash falling out of the cloud over Cook Inlet, and finally the last bit of bright sky over towards Homer was gone.

At that point, I was super excited. But then nothing happened. The sky seemed to lighten up a bit, and we couldn’t really see anything coming anymore. I’d just about given up when it arrived.

The ashfall came in a flurry of heavy snow. Snowflakes swirled around the yurt, pattering on our windows and skylight, speckling the fresh white snow with a mottled dark grey. The dog whined to go outside. We kept her in. A pungent sulfur smell hung in the air, making me feel a little odd even inside.

And then the snow slowly lightened, turning from grey to white again. The snow stopped. The sky cleared. The sun came out, shining on our newly greyed landscape. The air still stung just slightly of sulfur when we went out snowshoeing to check it out. Just as the sun was setting, after lots of photographing, I went out to gather an ash sample to send to AVO. I’ll grab another today.

The fate of the oil terminal at Drift River is stll unknown. See Skytruth’s blog.

The volcano is still restive. A smaller bang went off at midnight, and it could be months before it’s really quiet again.

Redoubt Volcano Eruption!

Posted by on 26 Mar 2009 | Tagged as: events, Fossil fuels, home, Issues, southcentral alaska

Redoubt Volcano Ash Cloud 9:28AM 3/26/09

When Redoubt volcano went off a few days ago, I was kind of bummed that it happened during the dark and in bad weather. We can see the volcano from our house! Except for that morning, we couldn’t.

Today, we can.

The biggest blow yet happened at a little before 9:30 this morning, and this time the cloud is headed our way – possibly arriving within the hour or sometime this afternoon. Hig’s trying to set up the camera to get some pics in case we do get ash, and going out to cover our shallow well with a tarp. I see a dark blue-grey cloud in the distance that looks a little suspicious…

Redoubt when it’s not erupting

Hig was snowshoeing around outside our house this morning, talking on the cell phone to a few folks across the country, in the middle of a teleconference…

“Grab the camera, the volcano is erupting!”

Redoubt Volcano Ash Cloud 9:34AM 3/26/09

I quickly glanced out the window to confirm it, ran out to pass him the camera, took a quick glance at the ash cloud, ran back into the house to get the baby, put on the wrap, and rushed back outside with fussing baby strapped on. Hig finished the teleconference while I bounced up and down on the snowy driveway, trying to keep Katmai calm while I took pictures. He may be named after a volcano, but he was not impressed. Maybe if he could see more than a few feet in front of his face…

Redoubt Volcano Ash Cloud 9:35AM 3/26/09

Hig and I (he’s a hazards geologist after all) think the eruption is exciting and cool, even if we do get ash. But of course, we do have to acknowledge that volcanic eruptions aren’t all fun and games. Redoubt’s been monitored pretty closely, and I think anyone who might possibly be flying has heard the news of the eruption and won’t fly into the ash. Most folks in the path have probably also heard, and have been expecting this for awhile. But there’s still the Drift River oil storage facility.

Redoubt Volcano Ash Cloud 9:38AM 3/26/09

Drift River Oil Terminal
When Redoubt erupts, the glaciers melt, sending huge lahars (volcanic mudflows) down the Drift River valley. We hiked through there in 2001, across the remains of the mudflows from the 1989-90 eruption. For some reason, the mouth of this river was chosen as the site for an oil-storage facility (don’t you think that the volcano might have come up as a risk when they were planning this? Probably, since during construction there was an eruption that stranded workers there.), and was nearly wiped out by the lahar. Maps of Drift River Terminal relative to Redoubt. If it is wiped out, we’ll have an oil spill on top of a mudflow headed into Cook Inlet. Crossing my fingers on that one.

Drift River lahar from 1989 eruption (pic 2001)

The Future of Fuel

Posted by on 25 Mar 2009 | Tagged as: Coal, Energy, Fossil fuels, Issues

Here at Ground Truth Trekking we’ve been hard at work on a new website… full announcement coming soon. Part of this has been doing a lot of reading on coal and other sources of fossil energy. One of the questions that particularly intrigued me involves how we might move to sustainable transportation. I’ve been wondering what we might replace oil based fuels for transportation with. Renewables as they are often discussed in the media focus around electricity generation, but the challenges and options there are a bit different than for transportation. So I thought I’d put together some of what I learned…

We’re headed toward some big changes in how we power transportation. Most people, including the US Dept. of Energy, think that high prices for oil will be back, and right now we run nearly all our transportation on oil. Also, global warming is largely caused by increases in CO2 from fossil fuels. So there is a widespread move to find fuels with smaller carbon footprints than conventional fuels.

Figure 1: Depending on what energy source is used for transportation, greenhouse gas emissions vary greatly. (Data mostly from EPA, 2007. Also Google Clean Energy 2030 Initiative and the DOE/EIA Annual Energy Outlook, 2009. To quantify these projections in the same way as the EPA, I assumed that the greenhouse gas emissions were proportional to percentage of generation from fossil fuels.)

Basically, it comes down to energy storage. Oil is old energy… stored in the fossilized remains of ancient organisms. There’s only so much of this old energy, and the high price volatility in the past few years is probably in part because we’re running out (or, more accurately, are nearing the peak of oil production).

And by using it we release carbon, as carbon dioxide, into the atmosphere that was otherwise stable beneath the earth—hence the greenhouse gas problem. So we’re looking for alternatives… Either another combustion fuel, or something else entirely.

Alternative Fossil fuels

Coal to Liquids

Oil prices on June 23, 2007.

Though oil may be running short, most people think coal, another fossil fuel, is abundant enough to meet our energy needs for a century or more (exception, extreme exception). In its native solid form it’s not very good for transportation. But liquid fuel similar to gasoline or diesel can be produced from coal through a refining process. Commonly called Coal to Liquids (CTL), large coal refineries would be built near mines to produce fuel. The problem with this is that between making and burning the fuel, over twice as much CO2 is produced (see Fig. 1).

Low Carbon Coal

Advocates of CTL suggest that some of the CO2 might be captured at the refinery, allowing it to be stored somehow, kept away from the atmosphere. But “low carbon coal” using carbon capture and sequestration (CCS) techniques like this have never been applied on a large enough scale for CTL, and are unlikely to be online in the near future.

Gas to Liquid

On the other side of the coin as far as alternative fossil fuels, its possible to take natural gas or gases from oil and fix them into a liquid form. These would extend our fuel supply only slightly, and release somewhat less CO2 to the atmosphere (Fig. 1).

Compressed Natural Gas

Natural gas might even be carried as-is, compressed and delivered to modified internal combustion engines. This provides the greatest benefit as far as CO2 reduction of any fossil fuel directly burned in an internal combustion engine (Fig. 1).


All of these options still directly use fossil fuels, and so will eventually need to be replaced by sustainable fuels. So fuels derived from living plants and algae are being explored as possible replacements for fossil fuels. These biofuels depend on either fermentation to produce alcohols (corn ethanol or cellulosic ethanol), or refining of photosynthesis-produced oils (biodiesel).

Corn Ethanol

Corn ethanol seems on the surface to have great potential. At least, that’s what the corn industry managed to convince the Bush administration of, leading to massive investment in corn ethanol. However corn ethanol has experienced a precipitous fall from grace. Environmental analysts found that the oil used to power the machinery, and to produce the pesticides and fertilizer to make the corn, was nearly as much as the fuel that was produced in the end (Fig. 1). This presents a problem both from an environmental perspective, and from an economic perspective. It means that price increases for petroleum derived fuels will translate straight into corn ethanol, so it’s tough for them to compete. Of course, it’s possible to grow corn with no fossil fuel help. Native Americans achieved this sustainably for many centuries, but they achieved that sustainability on a scale that has been dwarfed by modern industrial society.

Finally, if land use changes are factored in, corn ethanol really isn’t the way to reduce greenhouse gas emissions (Fig. 1). Especially if corn for ethanol displaces food production. This means that new land has to be brought into food production. As a result of carving new farmland out of the wilderness, CO2 is released that was previously held in the plants and soil that grew there. There are those who doubt this, but their reasoning is that we will see increased yields in the future, which requires increased use of fossil fuel based fertilizer and pesticides (known as the “green revolution“). Not to mention that stressing the food supply system at a time that may be the end of the pesticides and fertilizers that power the green revolution might be unwise…

Cellulosic Ethanol

We walked through hybrid cottonwood in northern Washington. Might these trees someday power cars?

Ok, so corn isn’t a good plant to ferment… what about using switch grass, hybrid cottonwood (poplar), or willow that can grow on poor farmland with little pesticides or fertilizer? This path has been less explored, and looks to be expensive, but may be one of the best as far as low CO2 impact.


Diesel has been produced by processing waste vegetable oil, or algae. In the case of algae derived biodiesel, biodiesel can be grown on land that is not suitable for food agriculture, but refining is easier, since instead of going through a fermentation process, the oils just need to be separated from the rest of the biomass.

Other possible fuels


Short of gathering it from other planets, hydrogen is not available as an energy source, but it may provide a way of storing energy from other sources for transport. Hydrogen can be made from fossil fuels, and then run through a fuel cell to produce electricity to run a motor. Or electricity can be used to split hydrogen out of water, possibly circumventing fossil fuels entirely (Fig. 1).


Probably the most immediate way to escape fossil energy sources for cars (but likely not for planes or container ships) is battery power. The battery technology is a limitation, but usable commuter vehicles now exist using batteries. If the energy for a vehicle can come from somewhere other than fossil fuels, then this becomes one of the most immediately sustainable options (see Fig. 1). This strategy is central to possible approaches to reducing US dependence on fossil fuels, such as the Google Clean Energy 2030 initiative.

Compressed air?

People are getting creative about ways to take the energy in the electric grid and put it in your car. Beyond batteries, and hydrogen split from water, there is work to use compressed air to power cars.

The Big Picture

The Road Warrior (Miller, 1981)

The challenge is not simply to find a way to change our current oil-derived fuels to something new. It is coming up with a new transportation infrastructure that in the short term can handle our immediate problems and that in the long term can be completely sustainable.

Part of this will be new ways of powering cars, trucks, plains, ships, trains… But it will include changes in how we use these modes of transportation. For example, right now, our military is in a particular bind… military jets and other vehicles consume vast amounts of fuel, and they need power and range that is not available for electric vehicles. Hence the military has been a big force behind CTL development. In a post-petroleum society, we might have trouble finding enough fuel to make war. Air transport has similar limitations for similar reasons. The personal vehicle fleet looks easier to re-configure… but an increase in the use of plug-in electric vehicles would be greatly facilitated by charging that occurred when electricity supply peaked (a “smart grid“). For transport of goods, it seems like it might be worthwhile to look at a modernized rail system. And for marine shipping, even futuristic sail might be an option. Regardless, with the end of easy and convenient petroleum fuels we’ll see big changes in the way our transportation works.

Further reading

Gas 2.0 blog
The Oil Drum
Google Clean Energy 2030 Initiative